疫情過後,走出寒冬后的人工智慧何去何從

千萬不要浪費一場危機。

——丘吉爾

疫情期間,杭州的城市大腦,健康碼、阿里全基因測序、CT影像等在疫情期間充分展示了中國以人工智慧等為新基建的中國城市治理能力。

正在熱議的兩會,確定以新型基礎設施建設為中心,以新發展理念為引領,以技術創新為驅動,全面發展5G、人工智慧等新型技術,加速產業化的落地。

本文主要從目前人工智慧領域存在的問題簡要推演下,走出寒冬后的人工智慧何去何從。

一、人工智慧的生產原料(數據)遇到了什麼問題

數據層應用現狀:

(1)存不下——數字化浪潮下的海量數據存儲挑戰

數據量的急劇上增是數據存不下的重要原因,目前據全球統計企業的數據量從PB級向EB級邁進,數據量將從2018年的32.5ZB快速增長到2025年的180ZB。

由於存儲系統仍為傳統架構以及成本等原因,當前企業數據僅有不到2%被保存,數據「存不下」的問題日益嚴重。

  • 存儲擴展性不足:傳統存儲由獨立的控制器與硬碟框組成,當容量不足時可增加新的硬碟框進行級聯,但由於控制器的處理能力受限,存儲的擴展能力非常有限。
  • 存儲協議類型單一:非結構化數據逐步成為企業數據的主體。隨著電商、物聯網等業務擴張,80%的新增數據由各類音視頻、日誌等非結構化數據構成。然而傳統存儲協議類型單一,無法同時滿足塊、對象、文件、大數據等多樣性數據的存取需求,企業不得不為每一種新的數據類型新增一種存儲設備,增加了高效利用存儲資源的難度。
  • 存儲成本依然高昂:越來越多的企業選擇將數據長期保存。2017年起,移動運營商因合規性要求,將其設備日誌的保存周期從2個月增加至6個月。

這意味著其數據存儲伺服器的設備規模將增加至少2倍。傳統的架構中,伺服器因存儲需求不斷擴容,但CPU的使用率卻始終處於較低的狀態,資源得不到合理利用,無疑會對採購成本和維護成本造成更大的壓力。企業不得不因為存儲成本而放棄大量寶貴數據。

(2)流不動——由來已久的數據孤島難題

孤立的數據價值並不顯著,只有當數據像水一樣流動起來,才能打破「數據壁壘」,最大化釋放其價值。

數據的「三類孤島」:

  • 應用孤島:不同應用產生的數據分別存放在不同的存儲系統中,而且這些數據由於各自的特徵,彼此之間是無法共享使用的,即形成「應用孤島」問題;
  • 管理孤島:為對生產數據加以保護和使用,會將生產數據的一個副本,拷貝到各個系統(如備份、容災、歸檔、開發測試和分析系統)中進行管理和使用。即便是同一份數據,為實現不同目的,還需分別存儲、管理和使用,即形成「管理孤島」問題;
  • 地理孤島:由於企業的更新換代,將存在多套存儲設備,比如生產環境、非生產環境、雲環境和邊緣環境,企業的數據將存放在不同的地方,形成「地理孤島」問題。

(3)用不好——數據供應不足造成應用複雜低效

海量的數據孕育了前所未有的機遇,也帶來了巨大的挑戰。甚至有人說,從來不缺數據,數據多了反而成為一種負擔。也有人說,數據只是資源,而不是資產,很難產生價值。其根本原因是沒有用好數據,數據沒有釋放價值。而影響數據價值釋放的主要原因是數據供應不足,無法反饋業務本質,支持業務決策:大量數據未存儲。

企業每天會產生大量數據,但傳統的數據錄入需要預先的人工規劃,這導致大量非結構化數據以及一些新型的數據無法進入系統(例如IoT數據、視頻數據、圖片數據等)。數據的缺失會削弱對業務的感知,無法真實及時地反映出業務本質。

找不到數據傳統企業通常通過數據表來管理和分析數據,規模較大的公司數據表甚至可以達到數百萬張,而且分散在各個業務系統中。如果沒有統一數據目錄和全局數據視圖,要在上百萬張報表中找到特定的數據,好比大海撈針,無法應對靈活多變的業務需求。

接下來致力於數據融合,發掘數據價值,擁有數據的企業將不斷重新定義人工智慧行業的發展。

二、人工智慧的技術及應用趨勢

從技術層面,近年來取得成功的AI技術大都基於深度學習和神經網路,當前熱門研究方向依然是基於這些方法的改進以及與對抗學習或強化學習等其它思想的融合。

(1)深度學習泛化能力及可解釋性進一步突破

在應用方面,這些技術已經進入了我們的日常生活,比如智能推薦、機器翻譯、聊天機器人以及各種圖像美化應用。

對於近期的未來,人們普遍相信深度學習還有進一步的發展空間,甚至希望徹底改變我們的生活方式,比如很多人都相信成功的自動駕駛技術將會徹底改變我們的生活出行。

同時,由於深度學習在泛化能力以及可解釋性方面的困難,也有人認為深度學習將難以在一些存在嚴格要求的領域發揮真正重要的價值,進一步的突破還需要探索更廣泛的方法。

模型可解釋性深度學習的模型可解釋性已經成為了制約深度學習廣泛應用的一大主要障礙,其在法律和倫理方面引發了些討論和爭議。可以預見這方面的技術探索和社會討論還會繼續。

深度神經網路與新思想融合Al繼續進入人類的日常生活智能音箱進入家庭、人臉識別在守衛街道、機器翻譯、自動駕駛汽車已經上路測試、數字助理正在學習處理越來越複雜的任務……Al應用還會繼續進入更多日常生活場景並繼續改變我們的生活方式。

(2)高效和低成本模型仍是研究熱點

高效和低成本模型儘管目前相當多一些模型已經能夠在較低成本的硬體上有效運行,但要訓練出足夠實用的模型,當前的深度學習方法往往需要大規模數據集和成本高昂的計算硬體。

如何設計高效的訓練方法已經成為當前的一大重要研究主題。對於已經誕生的Mobile Net、Shutfte Net和Pelee Net等一些模型,其實用性仍被認為還有所欠缺。高效和低成本模型仍會繼續是AI領域的一個重要未來方向。

(3)5G與AI融合是另一個發展的大趨勢

在技術成熟度曲線(The Hype Cycle)中,看我們可以充分看到,5G這種基礎設施鋪建的技術推到了風口浪尖,從技術成熟度曲線中,我們不難看出,5G及RPA的發展成了重頭戲,而對機器學習的關注度朝著下降的趨勢發展。

 對於某種技術來講,技術本身的發展隨著媒體的關注度會逐年下降,而維持一種技術本身的生命力來說,更多是技術+場景,也是技術本身的實用性和可複製性。

所以對於人工智慧的未來,技術的融合以及技術與場景的融合成了重中之重,AI平台的建立為更多人贏得了機會,並且也讓技術的快速融合成為了可能。

對於未來來說充滿著各種不確定性,不過沒關係順勢而為這是我們唯一可以堅信的一點,對於我們每個人來說,找到趨勢,順勢而為或許這是我們唯一可做的事情。